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 Abstract

A computer was used to help study the packing of equal
spheres in dimension four and higher. A candidate for the
densest packing in 4-space is described. The configuration
of 24 spheres touching a central sphere in this packing is
shown to be rigid, unlike the analogue in 3-space, in
which the spheres can slide past each other. A system for
interactively manipulating and visualizing such configura-
tions is described.

 The Voronoi cell for a sphere is the set of points closer
to its center than to any other sphere center in the packing.
The packing density is the ratio of a sphere’s volume to the
average of the volumes of the Voronoi cells. A method of
constructing Voronoi cells and computing their volumes is
presented, which works in any dimension. Examples of
Voronoi cell volumes are given.

 Introduction

Hsiang[1] has recently announced a proof that the
face-centered cubic (FCC) packing has the highest density
of any packing of equal spheres. (Actually it is in a tie with
infinitely many other related packings.) A central sphere is
surrounded by 12 spheres, each touching the central one
and four of the 12 others. This packing is important in
physics and chemistry, since it is common in crystals, and
the highest density would he favored at high pressure. Ke-
pler conjectured in 1611 that the FCC packing is the dens-
est, but a mathematical proof has only been given this
year. It is an interesting mathematical problem to find the
densest packing in higher dimensions as well. As dis-
cussed by Conway and Sloane [2], there is a relationship
between packings in higher dimensions, arrangements of
points on the unit sphere, and error detecting and correct-
ing codes for transmitting information. An easy way to de-
scribe the FCC packing is to put a sphere center at all
points (i, j, k) on the integer lattice such thati + j + k is
even, and set the radius to .5 Sqrt(2).

Figure 1. The FCC packing with velocity vectors.

In figure 1, the central dot is a sphere center at the ori-
gin (0, 0, 0). The other dots indicate sphere centers (i, j, k)
at the midpoints of the 12 edges of a cube of side 2, where
one ofi, j, ork is zero, and the other two are +1 or -1. Thus
a layer of the packing in thei = 0 plane is a tilted square
array in which each sphere touches its four diagonal
neighbors, and the layers ati = 1 ori = -1 fit into the gaps
at the center of each square. There are also layers of hex-
agonally packed spheres in planes perpendicular to the
four body diagonal vectors like (1, -1, 1). There is an anal-
ogous sphere packing, called D4, in 4- space, with sphere
centers at all integer lattice points (i, j, k, l) such thati + j +
k + l is even. In this packing, a central sphere is surround-
ed by 24 others, each touching it and eight of the 24 oth-
ers. Hsiang has conjectured that D4 is the densest packing
in 4-space. To aid in studying this conjecture, he has asked
four questions which a computer can help answer.

a) How many equal spheres can touch a central one? (A
collection of equal non-overlapping spheres all tangent
to a central one are called “kissing” spheres.)



b) Can the 24 kissing spheres in D4 slide past each other?

c) Given a collection of points in any number of dimen-
sions, all surrounding a central point P, what is the vol-
ume of the “Voronoi cell” of P (containing all positions
which are closer to P than to any other point in the col-
lection)?

d) Does the D4 packing give the smallest possible Voronoi
cell for kissing spheres?

 Problem c) is useful in studying the packing density,
since space can be divided up into the Voronoi cells corre-
sponding to the sphere centers. The packing density is then
the ratio of the volume of a sphere to the average of the
volumes of the Voronoi cells.

The problem of maximum packing density in 3-space is
complicated by the fact that the 12 kissing spheres in the
FCC packing can slide past each other. Figure 1 shows ar-
rows indicating the initial velocity vectors of the 12 kiss-
ing sphere centers during the sliding motion. On each
square face of the cube, two opposite centers move toward
each other, while the two others move farther away. This
changes the convex hull of the sphere centers from a poly-
hedron bounded by 6 squares and 8 triangles into one
bounded by 20 triangles. The spheres are now free to rat-
tle. As explained by Conway and Sloane [2], they can
move, for example, to kiss at the centers of the faces of a
regular dodecahedron circumscribed about the central
sphere.

The dodecahedron is the Voronoi cell for the central
sphere in this configuration, and it has smaller volume
than the Voronoi cell for the FCC packing. Hsiang [1] has
shown that this configuration has the greatest possible “lo-
cal density” (ratio of a single sphere’s volume to that of its
own Voronoi cell.) But this configuration does not extend
to an efficient global packing, because the 12 surrounding
spheres have gaps between them, making their Voronoi
cells larger. In the proof announced in [1], it is necessary
to study the possible configurations of up to 57 spheres in
two layers surrounding a central one, in order to analyze
the trade off between the Voronoi cell of the central sphere
and those of the spheres in the first surrounding layer.

Hsiang hopes to avoid this complexity in 4-space by
proving that the Voronoi cell for a sphere in the D4 pack-
ing has the smallest possible volume. Since every sphere
in the D4 packing is equivalent, this would show that D4
gives the densest packing. Answers to questions a), b), and
d) would be steps toward this proof.

Kissing Spheres (question a)

 Spheres can easily be manipulated mentally or physi-
cally in 3-space, but this is much harder to do in 4-space.
Therefore a model of the kissing spheres is manipulated in
a computer, which continually checks whether they over-

lap. Visualization is still useful, so the spheres in 4-space
are projected onto the 2-D screen using a combination of
radial, stereographic, and parallel projections. The kissing
spheres are first radially projected onto the surface of the
central sphere, giving a collection of non-overlapping
spheres of one lower dimension. This is illustrated in the
3-D case in figure 2. The central sphere is shown at the
bottom, and above it are two kissing spheres, tangent to
each other. Each projects radially onto the center sphere as
a circular region, shown shaded in the figure. The union of
the projection rays for each sphere form a cone with vertex
at the center of the radial projection, and these cones inter-
sect the central sphere in the shaded regions. Since the two
kissing spheres are tangent, so are the cones, and therefore
so are the shaded regions. In one dimension higher, the
shaded regions would correspond to non-overlapping
spheres on the 3-D surface of the central sphere in 4-space.
The positions of these projected regions uniquely specify
the positions of the kissing spheres, so visualizing them
can help in analyze the kissing spheres. But it is still diffi-
cult to visualize this 3-D surface, so the next step is to
project it onto ordinary 3-D Euclidean space.

 Figure 2. Two spheres projected onto a third sphere.

 This is accomplished by stereographic projection,
which works in any dimension. In 3-D, it is often used for
maps of the earth, since it preserves the shape of small sur-
face regions. It also maps circles on the globe to circles on
the plane, and in higher dimensions, maps spheres to
spheres.

 The northern regions are projected onto a plane tangent
to the central sphere at the north pole N. A point P on the
sphere projects to the point Q where the ray from the south
pole S through P meets the tangent plane. This projection
is defined for all points P except the south pole S. The pro-
jection from N onto the plane tangent at the south pole is
defined similarly, as shown in figure 3 in the 3-D case.



Spheres will project as round spheres, but the radius will in-
crease as they approach the projecting pole. When the sphere
passes through the pole, it projects as a hyperplane (a
straight line in 2-D). However each projection produces only
moderate size distortion in the hemisphere about the point of
tangency, and gives a good indication of the sphere arrange-
ment there.

Figure 3. Stereographic projection from the north pole.

 The next three paragraphs show why stereographic pro-
jection takes circles to circles in the 3-D case, using a geo-
metric argument. The argument generalizes to show that
spheres project to spheres in higher dimensions. A proof can
also be made algebraically, using analytic geometry. In fig-
ure 3, the circle through A and B projects to a rounded curve
through D and E, which we want to show is a circle. This
curve is the intersection of the tangent plane DS at S with the
cone through N and the circle AB. This cone has a circular
cross section in the plane of circle AB, but an elliptical cross
section in a plane perpendicular to its axis. We will show that
the planes AB and DS make equal angles to the axis, and that
this makes the cone intersect plane DS in a circle also.

Figure 4 shows a cross section in the plane through N, S
and the center K of the circle AB. In figure 3, A is the high-
est point on the circle AB and B is the lowest, so they both
lie in this cross section. The radius from the sphere center C
through K intersects the sphere at H, and arcs AH and HB
are equal. Since an inscribed angle is half of its intercepted
arc,∠ANH = ∠HNB. Thus the elliptical cone is symmetric
with respect to the plane through NH, perpendicular to the
section of figure 4. Reflection in this plane takes circle AB to
another circle FO, and∠ABN to an equal angle,∠NFG. If
we can show that the plane of FG is parallel to the projection
plane DS, then the curve DE will be a magnified version of
the circle FG, and thus also a circle.

To do this it is sufficient to show that∠NFG =∠NDS.
Now since NS is perpendicular to DS,∠NDS = 90° -
∠DNS. Also, arc AS + arc AN = arc NAS = 180°, and
∠DNS =∠ANS = 1/2 arc AS, so ∠NBA = 1/2 arc AN = 90°
- ∠DNS. Finally,∠NFG = ∠NBA by reflection symmetry,
so∠NFG =∠NDS as required.

The situation in figures 3 and 4 indicates that the points
D and E lie at ends of a diameter of circle DE, so the cen-
ter of the circle is at the midpoint of segment DE. Thus the
center and radius of the circle can be defined by projecting
just the top and bottom points A and B. This is true in
higher dimensions also, and this method was used to com-
pute the stereographic projections of the spheres. l pro-
duced cross-eyed stereo pairs of the stereographic
projection for each hemisphere, as shown in figures 5 to 8,
using parallel projection from two slightly different an-
gles. Since the spheres should not intersect, I sorted them
from back to front, and used the filled circle subroutine in
Xwindows to block out the hidden arcs and lines.

Figure 4. A vertical cross section of figure 3.

 An interactive program allowed the user to place a
sphere in 4-D, either by giving the center coordinates di-
rectly, by giving a relative change from a previous value,
or by specifying other spheres that it should touch (partic-
ularly useful for generating a close packing). In 4-D, a
sphere may be placed to touch four given spheres. There
are two such positions, on opposite sides of the hyperplane
through the centers of the four given spheres. Therefore, a
fifth sphere not on this hyperplane is specified, and the
new sphere is placed on the side opposite to this sphere.

Whenever a sphere is positioned, its distances to the
other spheres are computed, and any close contacts are re-
ported. The user may also read or write coordinates to a
file, rotate the stereographic projections in 3-D, or change
the style of the drawings. (Compare figures 5, 6, and 7.)
The Voronoi cell construction and volume computation
described below may also be requested at any stage.

 Figure 5 shows the 24 spheres in the D4 packing.
There are six spheres at the vertices of a regular octahe-
dron around the north pole. Next, there are 12 spheres at
the equator, arranged as in the FCC packing. These appear
in both views, and are larger due to the stereographic pro-
jection size distortion. Finally, there are six more spheres
in an octahedron around the south pole. The equator is the
large dotted circle in each view.



Figure 5. Cross-eyed stereo version of D4 packing.

Figure 6. Another style for drawing the Figure 5 spheres.

Figure 6 shows the same geometry drawn in a different
style, with a thick profile circle and two arcs at 60 and 120
degrees longitude on the front surface of each sphere,
which give the impression of roundness when viewed in
stereo.

Figure 7 shows a different configuration, with 10
spheres in the northern hemisphere: number “1”, at the
north pole, and nine others, all touching sphere number
“1” as well as the central sphere. This packs spheres more

tightly near the north pole than in the D4 case. However,
when nine additional spheres are placed touching the first
nine, their centers lie in the southern hemisphere, and
there is only room for one more sphere, number “20”, in
the space between them. The spheres were placed by spec-
ifying others which they touched, and interactive comput-
er investigation demonstrated that there is no room for a
21st sphere.

Figure 7. Another packing, with 9 spheres surround-
ing the north pole.

Rigidity (question b)

 In the FCC (or D4) packing, the arrangement of the 12
(or 24) spheres surrounding a central one is tight, so that
no sphere can move unless its neighbors also move. (In the
regular dodecahedron kissing configuration, the spheres
have room to rattle.) Thus any motion must be a concerted
one, with all the surrounding spheres sliding at once. This
puts constraints on the initial velocityv[i] of each of the 12
(or 24) spheres. Letp[ i] be the position of spherei, with
the central sphere at the origin. Then the condition for
maintaining tangency to the central sphere requires that

v[i] ⋅ p[i] = 0.

 This gives 12 (or 24) conditions for the 36 (or 96) com-
ponents of velocity. In addition, each surrounding sphere
initially touches 6 (or 8) others, and the initial velocities
preserve to first order the distances between pairs of
spheres in contact, because the arrangement is tight. This
gives another equation

(p[i] - p[j]) ⋅ (v[i] - v[j]) = 0,



for each pair (i, j) of surrounding spheres which touch each
other. There are 6⋅ 12/2 = 36 of these pairs in the FCC case,
and 8⋅ 24/2 = 96 in the D4 case, giving totals of 48 or 120
equations, respectively. These equations are not all indepen-
dent, however. The number of independent equations can be
found from the rank of the 48 by 36 (or 120 by 96) coeffi-
cient matrix. Since the equations are homogeneous and the
entries of the matrix are all integers (1,-1, or 0), the rank and
a basis for the space of solutions can be found by gaussian
elimination with exact integer arithmetic. When I did this
calculation in the FCC case, I found that the matrix has rank
32, so the space of solutions is of dimension 36 - 32 = 4.
Three of the basis elements can be chosen to be velocities of
rigid body rotations, since the rotation group for 3-space has
dimension 3. The fourth independent element describes the
initial velocities shown in figure 1 for the sliding motion. In
four dimensions, the rank of the matrix turns out to be 90, so
the solution space has dimension 96 - 90 = 6. Since the group
of rotations of 4-space also has dimension 6, each initial ve-
locity solution is the derivative of a rotation, and it follows,
as explained in the appendix, that there are no sliding mo-
tions. This answers question b) in the negative.

 Voronoi cell volume (problem c)

 Given a collection of points inn-space, the Voronoi cell
C of one of the points P is the set of all positions which are at
least as close to P than to any other point in the collection. If
Q is another point in the collection, the set of positions equi-
distant from P and Q is the hyperplane H perpendicular to
and bisecting the line segment PQ. This hyperplane H forms
part of the boundary of C (unless all positions on it are closer
to some other point in the collection). Thus C is the intersec-
tion of easily computed half-spaces, and can be constructed
by intersecting these half-spaces one by one. Once C is
known, it can he chopped up into simplices, whose volume
can be calculated using determinants. We first discuss the
construction of C, and then the volume calculation. Both cal-
culations were written to work for arbitrary dimensionn.

Since C is a polyhedron, it can be defined by lists of faces
in each dimension, together with incidence information
which gives the boundary of each face as a sum of faces in
the next lower dimension. The data structure for a face (or
for the whole polyhedron) includes a name, a link in the list
of faces of the same dimension, a linked list of boundary
face pointers in one dimension lower, and a linked list of ver-
tices.

When a polyhedron is intersected by the half-space on the
positive side of the hyperplane H, the equation for H is eval-
uated and stored with each vertex. Next each edge is clipped
by H. If an edge has both a positive and a negative vertex, a
new vertex is created where the edge intersects H, and the
edge is replaced by its non-negative portion. Then, in order
of increasing dimension, faces with only negative vertices

are eliminated, and each face F which intersects H is
clipped. The negative vertices of F, and the boundary faces
of F which have only negative vertices, are eliminated
from the appropriate lists. A new “capping” face is added
representing F∩H, whose boundary consists of the cap-
ping face G∩H for each boundary face G of F which inter-
sects H.

For a finite collection of points, some Voronoi cells will
be semi-infinite polyhedra. In order to handle these, the
data structures must be more general. For example, some
edges may have zero or one vertex, instead of two. How-
ever, such semi-infinite cells will have infinite volume,
and will not be used in estimating the packing density.
Therefore I wrote the program to handle only finite poly-
hedra.

This still presents difficulties, because when even a fi-
nite polyhedron is constructed as an intersection of half-
spaces, the initial few stages will be semi-infinite. l there-
fore started with a large hypercube, and intersected the hy-
perplanes with it. If any of the original hypercube faces re-
main, the size of the hypercube is doubled, and the
construction is repeated. After a doubling limit is exceed-
ed, an error is reported. (Finding the face structure of a hy-
percube in arbitrary dimensionn requires some calculation
with vertex index permutations.) A Voronoi cell is convex,
so it can be recursively divided up inton-simplices, each
given byn+1 verticesv[0], v[1], ..., v[n]. The volume of
such a simplex is l/n! times the absolute value of the deter-
minant of then by n matrix whose columns are then vec-
torsv[1] - v[0], v[2] - v[1], ..., andv[n] - v[n-1].

The simplest formula for a determinant involves the
sum ofn! terms, each a product ofn matrix elements.
However it can be computed in fewer steps with the LU
decomposition. As explained in [3], M is decomposed as
the product L⋅U of two square matrices, where L is lower
triangular (all elements above the main diagonal are zero)
and U is upper triangular (defined similarly). In addition,
the matrix L can be assigned to have all its diagonal ele-
ments equal to 1. Then the determinant of M is just the
product of the diagonal elements of U.

I used the Crout algorithm (see [3]) to compute L and
U, which takesn3/3 multiplications andn3/3 additions. I
was able to reduce the arithmetic even further by combin-
ing the Crout algorithm with the recursion used to subdi-
vide C. This was possible because thei ’th columns of L
and U depend only on the columns of M up to columni.

The recursion to subdivide C starts by choosing an ini-
tial vertexv[0] of C, and considering a pyramid fromv[0]
to each face of C which does not containv[0]. For each
such face F, an initial vertexv[1] is chosen, and the pro-
cess is repeated recursively. A chain of the recursion ter-
minates with a list ofn+1 vertices for a simplex, with ear-
lier vertices appearing together in more and more such
simplices. I rewrote the Crout algorithm to compute M, U,



and L one column at a time, and accumulated the product
of the diagonal elements of U during the recursion. Thus
the computation for the early columns is amortized over
many simplices.

 Minimum Voronoi Cell (problem d)

 The proof in [1] that the dodecahedron gives the mini-
mum Voronoi cell volume in 3-D uses a volume calcula-
tion which works for any solid bounded by planes tangent
to the sphere. If we take the collection of spheres touching
at the respective points of tangency, we get a generalized
collection of kissing spheres, which all touch the central
one, but are allowed to interpenetrate each other, so the
dodecahedron is also the minimum solution to this more
general problem. If the same sort of calculation would
work in four dimensions, the Voronoi cell from D4 should
also give the global minimum for the generalized problem.
However, Warren D. Smith of NEC Research Institute,
Princeton NJ, has conducted a search for a maximum vol-
ume inscribed polyhedron with 24 vertices on the unit
sphere in 4-space. He found the 24 vertices listed in table
l, whose convex hull has volume 2.18818. This exceeds
the volume 2.0 from the 24 vertices for D4.

 0.749954 -0.643197 -0.084056  0.129616
-0.828394 -0.525978  0.180627 -0.066966
-0.190731  0.714818 -0.397429  0.542869
-0.420367  0.043714  0.377460 -0.823957
 0.264726  0.358996 -0.289371 -0.846939
 0.107640  0.567716 -0.808451 -0.111887
 0.681175 -0.247155  0.120147 -0.678587
 0.296790 -0.078669 -0.729281  0.611454
-0.536970 -0.077939  0.045792  0.838744
-0.414729  0.118922  0.901507  0.033811
-0.144972  0.934721  0.131967 -0.296420
-0.595497 -0.191546 -0.753519  0.202243
-0.620266  0.250172 -0.524717 -0.526646
 0.385563 -0.274729 -0.829731 -0.295655
 0.683734 -0.065639  0.705573  0.174258
 0.838599  0.512987 -0.168448  0.072261
-0.155567 -0.682066 -0.315419 -0.641167
 0.377718  0.425282  0.674618 -0.470483
-0.877111  0.451110  0.124560  0.107982
 0.079658  0.629705  0.538647  0.554062
-0.021552 -0.526587  0.616342  0.585119
 0.464299 -0.021498  0.032543  0.884819
-0.093366 -0.877397 -0.276253  0.380975
 0.062900 -0.701895  0.621751 -0.341779

 Table 1.

When l tested the tangent planes at these points with the
algorithm of the previous section, l found a volume of
7.97690, which is smaller than 8.0, the volume for the
Voronoi cell of D4. More extreme examples may exist.
Thus D4 does not give the minimum solution to the gener-
alized problem, though it may still be the best for the strict
kissing sphere problem.

Figure 8. Twenty-four spheres at an equal distance
l.09 from a central sphere.

The collection of 20 spheres shown in figure 7 defines a
Voronoi cell around the central sphere of volume 9.0974
because of the inefficient packing around the south pole.
Perhaps this packing could be improved by moving all the
spheres farther away from the central one. I found that if I
increased the radius of the central sphere to 1.099965, and
kept the radii of the other kissing spheres at 1.0, I could
just squeeze in 24 spheres, as shown in figure 8, while
keeping the basic arrangement near the north pole close to
that in figure 7. (Precisely, the 9 great circles through the
north pole and one of the kissing points of the 9 sphere
surrounding the north are the same.) The Voronoi cell for
the central sphere in this configuration was 9.72727, re-
flecting the fact that the surrounding spheres are farther
away. When they are all moved inwards so that they over-
lap each other but kiss the central sphere, the volume de-
creases to 8.15590, which is larger than the D4 solution to
the “strict” kissing sphere problem.
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Appendix

In the analysis of problem b), we showed that if F(t) is an
allowed motion of the 24 kissing spheres, then the initial ve-
locity F′(0) is the derivative of a rotation. That is, if P is the
24 by 4 matrix of coordinates for the 24 sphere centers, then
there is a family of rotations R(t) so that F′(0)=R′(0)P. This
means that R(t)P agrees with F(t) to first order, att = 0. But
what about the higher derivatives? Since the constraint that
the 24 kissing spheres do not overlap is analytic, we will
consider only analytic motions F(t), which are defined by a
power series neart = 0. We will show that any such F is actu-
ally a family of rotations of P by repeated use of the first de-
rivative property above. We already know that R(t)P agrees
with F(t) to first order, so the motion

 M(t) = R-1(t) F(t)

has zero derivative at t = 0. Let

G(t) = M(t1/2)

so that
G(u2) = M(u)
dG(u2)/du = 2uG′(u2) = M′(u)
G′(u2) = M′(u)/(2u)

and
 G′(0) = 1/2 lim ((M′(u) - M′(0))/(u - 0)) =1/2 M′′(0).

Then, since G(t) is a nonoverlapping motion, there is a fami-
ly of rotations S(t) so that S′(0)P = G′(0). One can check that
the family of rotations R(t)S(t2)P agrees with F(t) to second
order.

To continue one step more, the motion given by the equa-
tion N(t) = S-1(t2)R-1(t)F(t) has zero first and second deriva-
tives att = 0. Using the derivatives of N(t1/3), and the fact
that F(t) is analytic to make the limits work, one can find as
before a family of rotations T(t) so that T′(0)P = 1/6 N′′′(0).
One can then show that R(t)S(t2)T(t3)P agrees with F(t) to
third order. If we continue this process to the limit, we can
match all the derivatives of F with a family of rotations.
Since F is analytic, this matches F itself, so F is a family of
rotations of P, and not a sliding motion.


